
Física II-2014

Primer parcial de promoción -22/09/2014

Problema 1

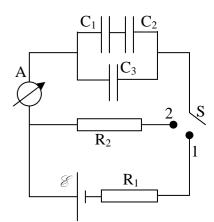
El dibujo muestra un conductor esférico de radio b= 0.05 m, que tiene en su interior un hueco esférico, vacío, de radio a=0.03 m. A este conductor se le transfiere una carga Q= 50 nC.

a) Obtenga las expresiones para el campo eléctrico en todas las regiones del espacio. **Justifique su respuesta** haciendo todos los esquemas necesarios. Dibuje el vector campo en todos los casos necesarios.

- **b**) Determine la carga existente en las superficies interior (r= a) y exterior (r=b) del conductor. **Justifique su respuesta.**
- c) Evalúe la diferencia de potencial entre r=a y r=b.
- d) Evalúe la diferencia de potencial entre r=b y r=0.1 m.
- e) Un protón está inicialmente sujeto en la superficie exterior del conductor, y se lo suelta. Evaluar su energía cinética cuando esté pasando por r=0.1 m.

Problema 2

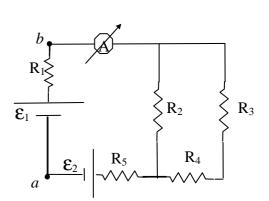
En el circuito del dibujo, $\mathcal{E}_1 = 50 \text{ V}$, $\mathcal{E}_2 = 66 \text{ V}$. Los valores de las resistencias son: $R_1 = 20 \Omega$; $R_2 = 50 \Omega$, $R_3 = 140 \Omega$; $R_4 = 60 \Omega$ y $R_5 = 100 \Omega$. Calcular:


- a) la lectura del amperímetro, mostrando sentido de I (en un dibujo del circuito **en su hoja**)
- b) la diferencia de potencial entre *b* y *a*, indicando punto de mayor potencial;
- c) la diferencia de potencial entre los extremos de R₃, indicando cuál es el extremo de mayor potencial;
- d) La potencia disipada por R₃.
- e) Indicar para cada batería si funciona como generador o receptor. Justificar las respuestas.

Problema 3

 $C_1=3.3 \mu F$, $C_2=6.6 \mu F$, $C_3=5 \mu F$; $R_1=1500\Omega$, $R_2=3000 \Omega$; $\mathcal{E}=12V$.

- a) Calcular la capacidad equivalente del sistema de condensadores de la figura
- b) Si se conecta la llave S en el **punto 1**, determinar la carga y la diferencia de potencial que tendrá cada uno de los condensadores después de un tiempo muy largo $(t \rightarrow \infty)$.
- c) Evaluar la energía almacenada en el sistema de condensadores en la situación anterior.


Después de estar un tiempo muy largo conectada en 1, se pasa la llave S al **punto 2** y se empieza a contar nuevamente el tiempo. Dibujar el circuito resultante en su forma más simple y determinar:

- d) La lectura del amperímetro en el instante en que se conecta la llave en 2. Hacer un dibujo indicando en qué sentido circula esa corriente.
- e) La carga del condensador equivalente en t = 0.01 s.
- f) La energía almacenada en el sistema de condensadores en $t \rightarrow \infty$, y la energía disipada por R_2 entre t=0 y $t\rightarrow \infty$.

NOTA: en todos los problemas, las fem y los instrumentos son ideales.

$$\varepsilon_0 = 8.85 \text{x} 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}, e = 1.6 \text{x} 10^{-19} \text{ C}$$

